NAG C Library Function Document

nag prob non central students t (g01gbc)

1 Purpose

nag_prob_non_central_students_t (g01gbc) returns the lower tail probability for the non-central Student's t-distribution

2 Specification

3 Description

The lower tail probability of the non-central Student's t-distribution with ν degrees of freedom and non-centrality parameter δ , $P(T \le t : \nu; \delta)$ is defined by:

$$P(T \le t : \nu; \delta) = C_{\nu} \int_{0}^{\infty} \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\alpha u - \delta} e^{-x^{2}/2} dx \right) u^{\nu - 1} e^{-u^{2}/2} du, \quad \nu > 0.0$$

with

$$C_{\nu} = \frac{1}{\Gamma(\frac{1}{2}\nu)2^{(\nu-2)/2}}, \quad \alpha = \frac{t}{\sqrt{\nu}}$$

The probability is computed in one of two ways,

(a) when t = 0.0, the relationship to the normal is used

$$P(T \le t : \nu; \delta) = \frac{1}{\sqrt{2\pi}} \int_{\delta}^{\infty} e^{-u^2/2} du;$$

(b) otherwise the series expansion described in Amos (1964) (equation 9) is used. This involves the sums of confluent hypergeometric functions, the terms of which are computed using recurrence relationships.

4 Parameters

1: \mathbf{t} - double Input

On entry: the deviate from the Student's t-distribution with ν degrees of freedom, t.

2: \mathbf{df} - double Input

On entry: the degrees of freedom of the Student's t-distribution, ν .

Constraint: $df \ge 1.0$.

3: **delta** – double *Input*

On entry: the non-centrality parameter of the Students t-distribution, δ .

[NP3491/6] g01gbc.1

4: **tol** – double *Input*

On entry: the absolute accuracy required by the user in the results.

If nag_prob_non_central_students_t is entered with **tol** greater than or equal to 1.0 or less than $10 \times machine\ precision$ (see nag_machine_precision (X02AJC)), then the value of $10 \times machine\ precision$ is used instead.

5: **max iter** – Integer

Input

On entry: the maximum number of terms that are used in each of the summations.

Suggested value: 100. See Section 6 for further comments.

Constraint: $max_iter \ge 1$.

6: **fail** – NagError *

Input/Output

The NAG error parameter (see the Essential Introduction).

5 Error Indicators and Warnings

NE REAL ARG LT

On entry, **df** must not be less than 1.0: $\mathbf{df} = \langle value \rangle$.

NE INT ARG LT

On entry, max iter must not be less than 1: max iter = <value>.

NE_SERIES

One of the series has failed to converge with $\mathbf{df} = \langle value \rangle$ and $\mathbf{max_iter} = \langle value \rangle$. Reconsider the requested tolerance and/or the maximum number of iterations.

NE PROBABILITY

The probability is too small to calculate accurately.

NE INTERNAL ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.

6 Further Comments

The rate of convergence of the series depends, in part, on the quantity: $t^2/(t^2+\nu)$. The smaller this quantity the faster the convergence. Thus for large t and small ν the convergence may be slow. If ν is an integer then one of the series to be summed is of finite length.

If two tail probabilities are required then the relationship of the t-distribution to the F-distribution can be used:

$$F = T^2$$
, $\lambda = \delta^2$, $\nu_1 = 1$ and $\nu_2 = \nu$,

and a call made to nag prob non central f dist (g01gdc).

Note: this routine only allows degrees of freedom greater than or equal to 1 although values between 0 and 1 are theoretically possible.

6.1 Accuracy

The series described in Amos (1964) are summed until an estimated upper bound on the contribution of future terms to the probability is less than **tol**. There may also be some slight loss of accuracy due to calculation of gamma functions. For large values of $\delta > 50$ there may be significant loss of accuracy.

g01gbc.2 [NP3491/6]

6.2 References

Amos D E (1964) Representations of the central and non-central t-distributions Biometrika 51 451-458

7 See Also

nag prob non central students t (g01gbc)

8 Example

Values from, and degrees of freedom for and non-centrality parameter of the non-central Student's t-distributions are read, the lower tail probabilities calculated and all these values printed until the end of data is reached.

8.1 Program Text

```
/* nag_prob_non_central_students_t (g01gbc) Example Program.
 * Copyright 1999 Numerical Algorithms Group.
* Mark 6, 2000.
#include <stdio.h>
#include <nag.h>
#include <nagg01.h>
int main(void)
  double delta, df, prob, t, tol;
  Integer max_iter;
  Integer exit_status = 0;
  NagError fail;
  INIT_FAIL(fail);
  Vprintf("g01gbc Example Program Results\n\n");
  /* Skip heading in data file */
  Vscanf("%*[^\n]");
  Vprintf("
                     df delta
                                        prob\n\n");
  tol = 5e-6;
  max_iter = 50;
  while ((scanf("%lf %lf %lf %*[^\n]", &t, &df, &delta)) != EOF)
     prob = g01gbc(t, df, delta, tol, max_iter, &fail);
      if (fail.code == NE_NOERROR)
Vprintf(" %8.3f%8.3f%8.3f%8.4f\n", t, df, delta, prob);
 {
   Vprintf("Error from g01gbc.\n%s\n", fail.message);
   exit_status=1;
          goto END;
 }
END:
  return exit_status;
}
```

[NP3491/6] g01gbc.3

8.2 Program Data

```
g01gbc Example Program Data
-1.528 20.0 2.0 :t df delta
-0.188 7.5 1.0 :t df delta
1.138 45.0 0.0 :t df delta
```

8.3 Program Results

g01gbc Example Program Results

t	df	delta	prob
-1.528	20.000	2.000	0.0003
-0.188	7.500	1.000	0.1189
1.138	45.000	0.000	0.8694

g01gbc.4 (last) [NP3491/6]